Тигельная печь ее виды и их особенности

Перемешивание металла в тигельных индукционных печах Агентство Литьё

Индукционные тигельные печи длительное время пользовались популярностью на чугунолитейных и цветнолитейных заводах, а в последнее время начали получать признание на сталелитейных заводах. По сравнению с печами, работающими на топливе, и электродуговыми печами, индукционные тигельные печи обеспечивают более мощное перемешивание жидкого металла и более однородную температуру металла, более низкое загрязнение окружающей среды и более низкий уровень шума, более низкие затраты на футеровочные материалы и выполнение футеровочных работ.

Поскольку физика электромагнитного поля сложна, индукционные печи все еще часто неправильно понимают. Хотя точный количественный анализ магнитогидродинамических моделей, которые определяют поток металла в индукционных печах утомителен, качественное объяснение может быть представлено довольно четко.

Перемешивание металла в индукционной тигельной печи было мало изучено, до проведения Inductotherm в середине 1970-х годов исследований, которые позволили сформировать науку о силах перемешивания. До этого времени считалось, что индуктивное перемешивание в индукционной печи линейно связано с высотой мениска в печи. Эта линейная зависимость представлена на рис. 1.

Рис. 1: Высота мениска расплавленного металла

Высота мениска прямо пропорциональна мощности и ​​обратно пропорциональна квадратному корню из значения частоты. Однако в реальных процессах плавления стало очевидно, что этот упрощенный подход не является точной мерой перемешивания. Печи, содержащие одинаковое количество одного и того же металла, но работающие на разных частотах, не перемешивались одинаково, даже если высота мениска была одинаковой.

Ток, текущий в поверхностном слое расплава, проникает на глубину, определяемую частотой тока, протекающего в индукционной катушке, и типом металла. Этот поверхностный слой называется «глубиной проникновения» и описывается формулой, представленной на рис. 2.

Рис. 2: Распределение тока и глубина проникновения в индукционную тигельную печь

Было обнаружено, что высота мениска обусловлена взаимодействием магнитного поля от индукционной катушки и тока, протекающего в расплавленном металле. Эта сила равна векторному произведению плотности магнитного потока и плотности тока расплава (JxB) и приложена к окружности расплава.

Эта сила, действующая на окружность расплава, сжимает жидкость, в результате чего часть жидкости отрывается от стенки и поднимается вверх (см. рис. 3). Поскольку J и B пропорциональны току, протекающему через катушку, высота мениска пропорциональна в квадрате току, протекающему через катушку.

Рис. 3: Взаимодействие электромагнитных и ферростатических сил в индукционной печи

Так как kW = I²R, где R — сопротивление катушки и расплава, то высота мениска пропорциональна мощности, приложенной к печи, и обратно пропорциональна сопротивлению катушки печи и расплава. Высота мениска (MH) представляет потенциальную энергию расплава так же, как высота воды в резервуаре (WH) представляет потенциальную энергию / давление воды в этом резервуаре (см. рис. 4).

Рис. 4: Высота мениска

В печи поток металла ускоряется только тогда, когда в расплаве течет ток. Таким образом, ускоренный поток возникает только в области, определяемой как глубина проникновения тока. Эта глубина проникновения приравнивается к размеру трубы, соединенной с резервуаром. Большая глубина проникновения тока будет большой трубой, а очень малая глубина проникновения тока будет очень маленькой трубой (см. рис. 5).

Рис. 5: Влияние частоты на глубину проникновения

Очевидно, что для той же высоты мениска (или водяного столба в резервуаре определенной высоты), чем больше глубина проникновения тока (чем больше диаметр трубы), тем больше будет перемешивание (более мощный поток воды).

Когда вы проведете математические расчеты этого процесса, вы обнаруживаете, что перемешивание не линейно пропорционально высоте мениска, а гораздо больше зависит от самой частоты тока. Формула на рис. 6 позволяет рассчитать интенсивность перемешивания в данной системе, используя следующие параметры: мощность, частота, размеры печи и характеристики расплавляемого сплава.

Рис. 6: Индекс перемешивания

Рис. 7 наглядно иллюстрирует доминирование частоты тока над другими параметрами влияющими на интенсивность перемешивания расплава в индукционной тигельной печи.

Рис. 7: Эффект увеличения частоты

Примеры перемешивания

Плавка чугуна

Чугунолитейные заводы обычно нуждаются в среднем уровне перемешивания расплава, чтобы правильно растворить добавки и получить гомогенный сплав. Один чугунолитейный завод производящий высокопрочный чугун с шаровидным графитом достиг желаемого уровня перемешивания с помощью индукционного плавильного агрегата мощностью 9000 кВт, работающего на печи вместимостью 12,5 т. Эта система работала при 210 Гц со средним индексом перемешивания 42,3.

Более крупный литейный завод, производящий серый чугун, использует свою индукционную плавильную систему мощностью 20 500 кВт при частоте 180 Гц для достижения умеренного показателя перемешивания 47,9.

Плавка алюминия

Плавка алюминия требует более высокого уровня перемешивания для плавления стружки и легких материалов. Один производитель алюминиевых сплавов достиг требуемой интенсивности перемешивания с помощью индукционного источника питания мощностью 300 кВт, работающего на печи емкостью 0,8 т. Работая при 60 Гц, он давал очень сильный индекс перемешивания — 117,27.

Другой производитель алюминиевых сплавов, плавивший алюминиевый лом, эксплуатировал свою 1500-киловаттную 7-ми тонную систему плавления алюминия на частоте 60 Гц, чтобы достичь индекса интенсивного перемешивания 75,7.

Плавка стали

Сталелитейные заводы обычно выплавляют свои сплавы при высоких температурах и используют низкий уровень перемешивания, чтобы максимально продлить срок службы футеровки. К примеру, сталелитейный абразивный завод работал с индукционным источником питания мощностью 1500 кВт и индукционной печью вместимостью 2,2 т на частоте 590 Гц для достижения показателя легкого перемешивания — 22,6.

На литейном заводе по выплавке стали, на котором плавили различные стальные сплавы, работала система индукционной плавки мощностью 175 кВт, обслуживая печь вместимостью 75 кг, на частоте 2800 Гц для достижения показателя легкого перемешивания — 25,7.

Читайте также:  Защита дома 10 лучших нелетальных средств самообороны

Индукционная печь с принудительным перемешиванием металла

Перемешивание расплавленного металла в индукционной печи может быть достаточным для большинства металлургических практик. Однако в некоторых случаях различные схемы перемешивания, в дополнение к обычному перемешиванию с «двойным пончиком», могут способствовать процессам плавления, рафинирования или легирования в индукционных печах. Это усиленное перемешивание может быть выполнено с помощью частотно-модулированного перемешивания или многофазного перемешивания с бегущей волной, описанного ниже.

Частотно-модулированное перемешивание

При частотно-модулированном перемешивании мощность и частота в индукционной печи изменяются (варьируются) с низкочастотными интервалами. Изменение тока и частоты изменяет мениск, перемещая его вверх и вниз. Движение мениска посылает волны давления в ванну расплава, которая, отражаясь от дна печи, распространяется обратно на поверхность печи. При правильном выборе частоты модуляции в расплавленной ванне могут образовываться стоячие волны. Эти волны вызывают значительное перемещение металла вверх и вниз внутри печи. В сочетании с естественным круговым движением металла этот тип улучшенного перемешивания обеспечивает отличное перемешивание расплавленной ванны.

Перемешивание бегущей электромагнитной волной

Рис. 8: Однонаправленное перемешивание в двухфазной индукционной печи

Бегущие магнитные волны всегда требуют реализации нескольких катушек и фазового сдвига между токами, протекающими в каждой катушке. Подобно асинхронному двигателю, многофазная печь заставляет металл двигаться в одном направлении вдоль стенки корпуса печи , создавая однонаправленное перемешивание. Изменение последовательности фаз изменяет направление потока расплавленного металла.

Однонаправленное перемешивание осуществляется путем подачи двухфазного тока, сдвинутого на 90° для каждой катушки (см. рис. 8). Также возможен трехфазный ток, смещенный на 120 ° или четырехфазный ток.

Ниже приведены практические электрические схемы для возбуждения однонаправленного перемешивания бегущей волны:

1. Один плавильный и один трехфазный источник перемешивания могут быть подключены к одной трехсекционной катушке, как показано на рис. 9. Эта схема использует один среднечастотный инвертор для нагрева / плавления и трехфазный линейный преобразователь частоты для перемешивания.

Рис. 9: Один источник питания с трехсекционной катушкой подключен к главному преобразователю частоты с помощью механических переключателей

2. Трехфазный инвертор, подключенный к трехсекционной катушке, показан на рис. 10. Выходы инвертора могут работать с управлением в однофазном режиме для плавления или в трехфазном режиме для перемешивания. В режиме плавления ток во всех катушках имеет одинаковую фазу. В режиме перемешивания ток в катушках B и C смещается на 120° и 240° соответственно. Эта схема является более надежной, чем другие, потому что она не требует больших переключателей тока для переключения с расплава на однонаправленное перемешивание или наоборот.

Рис. 10: Система Uni-Stir с тремя независимыми инверторами

3. Двухфазный инвертор, показанный на рис. 11, с фазовым сдвигом от 0 до 90° также может производить однонаправленное перемешивание. Хотя интенсивность перемешивания на 25% меньше, чем трехфазное однонаправленное перемешивание, этого достаточно для создания непрерывного однонаправленного потока. Направление потока может быть изменено, когда фаза второго инвертора изменяется от + 90° до -90°.

Рис. 11: Система Uni-Stir с двумя независимыми инверторами

Технология моделирования

Современные компьютерные технологии позволяют моделировать распределение электромагнитных полей и магнитогидродинамических процессов в индукционных печах. Результаты этого моделирования показывают закономерность движения металла.

На рис. 12 показано типичное компьютерное моделирование перемешивания металла в стандартной индукционной плавильной печи. На рис. 13 показано движение металла в той же печи с двухфазным инвертором, вызывающим однонаправленное перемешивание.

Рис. 12: Схема движения металла в плавильной печи

Рис. 13: Схема движения металла в двухфазной перемешивающей печи

Для многих применений может быть достаточно однофазной индукционной печи с естественным перемешиванием. В таких применениях, как вакуумная очистка, специальное легирование, позднее добавление или трудно расплавляемый лом, могут потребоваться улучшенные методы перемешивания. Двух- или трехфазные инверторы предпочтительны для однонаправленного перемешивания, потому что они не требуют переключателей печи с высоким уровнем обслуживания. Трехфазные инверторы могут использоваться в случаях, когда требуется более интенсивное перемешивание.

Рис. 14: Поверхность ванны расплава при обратном однонаправленном перемешивании

На рис. 14 показана поверхность расплава цинка в индукционной плавильной печи, работающей в режиме двухфазного обратного перемешивания. На ней четко видны нити металла, поднимающиеся по стенкам тигля и спускающиеся по центру ванны, образуя воронку. Когда в расплавленную ванну добавляют металлическую стружку из легкого материала, такого как алюминий, она быстро затягивается в ванну и растворяется.

Применение однонаправленного перемешивания позволяет получать сплавы более высокого качества, с более жесткими допусками по химическому составу. Детали, изготовленные из таких качественных сплавов, могут быть меньше и легче при соблюдении необходимых требований к прочности и физическим характеристикам.

Современные технологии предлагают ряд интересных возможностей и решений. Индукционные плавильные / перемешивающие установки должны быть тщательно подобраны для обеспечения наилучшей производительности для конкретных условий клиентов. Назначение процесса и материал сплава определяют размер печи, тип, оптимальную частоту и мощность.

Автор

Satyen N. Prabhu (Сатьен Н. Прабху) — президент и генеральный директор Inductotherm Corp.

Перевод

Олег Виноградов — технический директор Агентства Литье++, г. Киев

Справка

Inductotherm Corp. разрабатывает и производит самые современные системы индукционной плавки, нагрева, выдержки и разливки практически для всех видов обработки металлов и материалов. К ним относятся оборудование для серого и ковкого чугуна, стали, меди и сплавов на основе меди, алюминия, цинка, химически активных металлов, драгоценных металлов, кремния и графита, а также множество других специальных применений. Как ведущий мировой производитель систем индукционной плавки металлов, на сегодняшний день Inductotherm построила более 36500 систем плавки и нагрева для производителей металла и металлообработки по всему миру.

Читайте также:  А всё-таки велосипед — это транспорт, отдых или спорт »

Выплавка стали в вакуумных индукционных печах

Вакуумные индукционные печи могут быть периоди­ческого и полунепрерывного действия. Наиболее удобен последний тип печи. Полный цикл плавки в вакуумной индукционной печи складывается из следующих периодов:

  • загрузка шихты;
  • откачка печи до рабочего давления (если печь периодического действия или прово­дится первая плавка в печи полунепрерывного дейст­вия);
  • расплавление;
  • доводка и рафинирование металла;
  • выпуск;
  • чистка тигля.

Продолжитель­ность плавки в 0,5-т вакуумной печи составляет 3 ч 25 мин при следующей продолжительности отдельных периодов: загрузка 5 мин, откачка 8 мин, расплавление 2 ч 30 мин, рафинирование и доводка 35 мин, выпуск 4 мин, чистка тигля 3 мин.

Загрузка шихты

При выплавке стали в вакуумных индукционных печах высокие требования предъявляют к чистоте поверхности кусков шихты; их подвергают дробеструйной очистке или очистке во вращающихся барабанах (процесс «светления» шихты). Состав шихты должен быть точно известен. Поэтому для переплава в вакуумных печах применяют специально приготовлен­ную заготовку или крупногабаритные отходы прокатных цехов и собственные отходы. Загрузка печи осуществля­ется при помощи корзины. Ферросплавы, загружаемые вместе с шихтой, необходимо прокаливать для уменьше­ния количества адсорбированных на их поверхности га­зов и влаги. Шихту загружают так, чтобы избежать за­висания. Контейнер с шихтой в печи полунепрерывного действия помещается в камеру загрузки. Контейнер из­готавливают из мягкого железа, и его массу учитывают при расчете шихты.

Расплавление

Печи периодического действия после загрузки шихты закрывают и включают систему ваку­умирования. При достижении разрежения в несколько миллиметров ртутного столба включают ток. В печах полунепрерывного действия ток включают сразу после загрузки шихты.

При бурном закипании металла необходимо снизить подводимую мощность, а в печах небольшой емкости в момент бурного закипания в систему вводят аргон до давления 6,7—13 кПа (50—100 мм рт. ст.). После успокоения ванны и расплавления всей садки давление в печи снижают до рабочего. Период плавления занимает до 75% всего времени плавки в вакуумной индукцион­ной печи. Для сокращения этого периода иногда в ти­гель заливают жидкий полупродукт, полученный в дру­гом сталеплавильном агрегате, например дуговой электропечи. Продолжительность плавки на жидком по­лупродукте сокращается в три-четыре раза.

Доводка металла

В вакуумной индукционной печи можно провести десульфурацию металла. Для этого во время завалки на дно тигля необходимо загрузить шла­кообразующую смесь, например из 90% извести и 10% плавикового шпата. Десульфурация происходит во вре­мя расплавления, и через 2—5 мин после расплавления шихты степень десульфурации может достигнуть 70— 80%. Конечное содержание серы в металле в этом слу­чае составляет 0,002—0,003%.

Одно из преимуществ вакуумных печей заключает­ся в том, что глубокое раскисление металла осуществля­ется углеродом. Образующийся СО легко удаляется из металла. Поэтому металл не загрязняется продуктами раскисления. При выплавке безуглеродистых сплавов, например, на никелевой основе, безуглеродистой нержавеющей стали и т. д. для раскисления металла углеро­дом присаживают графит, чугун, углеродистый феррохром и др. Раскисление металла углеродом в вакуумных печах начинается в период плавления, когда пузыри СО зарождаются на кусках нерасплавившейся шихты.

Длительность выдержки металла в вакууме зависит от состава выплавляемого металла, глубины вакуума и принятой технологии выплавки. Удлинение выдержки способствует глубокой дегазации и раскислению метал­ла, также удалению летучих компонентов (Pb, Sn, As и т. д.).

Вместе с тем взаимодействие металла с футеров­кой тигля приводит к загрязнению его неметаллически­ми включениями и восстанавливаемыми из футеровки элементами например, бором, алюминием, кремнием и т. д. Оптимальная длительность выдержки в вакуумных печах малой емкости составляет 20—30 мин. Процессу дегазации металла способствует продувка его аргоном и гелием. Азот удаляется при продувке водородом.

Важным моментом получения качественного метал­ла является правильный порядок присадки легирующих элементов. Ферровольфрам, ферросилиций и молибден загружают обычно с шихтой в контейнер. После расплавления и раскисления металла углеродом в ванну приса­живают феррохром, и феррованадий. Затем вводят алю­миний, титан. В условиях вакуума марганец интенсивно испаряется. Поэтому его необходимо вводить в ванну в конце плавки вместе с алюминием и титаном. В конце плавки присаживают редкоземельные металлы, силикокальций, ферробор. Слишком ранняя присадка указан­ных элементов приводит к загрязнению металла неметал­лическими, оксидными и нитридными включениями. Поздняя присадка легирующих и раскислителей не по­зволяет обеспечить рафинирование металла от вредных примесей, содержащихся в добавках.

Выплавленный в вакуумной индукционной печи ме­талл разливают, как правило, в вакууме. Металл в ваку­уме вследствие отсутствия оксидных пленок на по­верхности характеризуется повышенной жидкотекучестью. Слитки, отлитые в вакууме, получаются плот­ными и пораженность усадочными пороками невелика.

Вакуумно-индукционные печи широко используют в литейном производстве для получения отливок из трудно деформируемых сплавов.

Выплавка стали в индукционных печах

Для выплавки высококачественных сталей и сплавов с особыми свойствами применяют бессердечниковые индукционные печи, работающие по принципу трансформатора (рис. ).

Переменный ток, подводимый к индуктору и являющийся первичной обмоткой, индуктирует ток в расплавленном металле, выполняющем роль вторичной обмотки. При этом генерирование тепла происходит непосредственно в металлической шихте, загруженной в тигель внутри индуктора. Это обеспечивает высо кий тепловой к. п. д. и делает индукционные печи наиболее совершенными в теплотехническом отношении агрегатами.

Для питания индукционных печей малой емкости (до применяют высокочастотные ламповые генераторы частотой до 10 мГц, а печей средней небольшой емкости (от 500 до 6 тыс. кг) — машинные генераторы частотой 0,5—10 кГц. Печи еще большей емкости питаются токами промышленной частоты (50—60 Гц). Емкость промышленных индукционных печей в настоящее время достигает 25—30 т.

Читайте также:  Карта Шелл (shell) проверить баллы

Тигель индукционной печи открытого типа, работающий в атмосферных условиях, опирается на керамический под, а вся конструкция заключена в стальной кожух, огражденный экранами-ширмами от воздействия индуктора. Индуктор представляет собой соленоид, изготовленный из медной трубки, по которой протекает вода для охлаждения под давлением 304— 500 кН/м 2 . Рабочее пространство печи закрыто футерованной крышкой. Печь наклоняется на любой угол, и металл сливается через сливной носок при выключенном токе.

В электрооборудование печи входят: преобразовательный агрегат; конденсаторные батареи для компенсации реактивной мощности, т. е. повышения cosφ до единицы; щит управления; аварийные сигнализаторы и автоматическое регулирование электрического режима.

Рис. Индукционная печь емкостью 8 т: 1 — крышка; 2 — сливной носок; 3 —индуктор; 4 — основание пода; 5 — огнеупорный тигель

Тигли индукционных печей изготавливают как из основных (магнезит), так и из кислых (кварцевых) материалов. Так как шлак разогревается от металла, то его температура недостаточна для создания активных шлаков нужного состава, поэтому рафинирование металла с помощью шлака в индукционной плавке становится невозможным. Плавки ведут методом переплава, без рафинирования под шлаком. Ограниченность окисления (угар Мn — 5—10%; W и Мо — 2—3%), высокие температуры, интенсивное перемешивание дают возможность выплавлять в индукционных печах высоколегированные стали и сплавы. При специальной конструкции индукционной печи плавка, а также разливка и затвердевание металла могут быть проведены под вакуумом. Металл, выплавленный таким способом, содержит ничтожное количество растворенных газов, содержание азота снижается в нем до 0,001%, снижается содержание неметаллических включений.

Необходимо отметить, что при взаимодействии расплава с материалом тигля металл загрязняется неметаллическими включениями. Это обстоятельство и другие отрицательные моменты и особенно высокая стоимость передела ограничивают применение индукционных вакуумных печей.

Плавка методом переплава

Плавку производят без окислительного периода или с непродолжительным окислением продувкой кислородом. В восстановительный период удается переплавить высоколегированные отходы в количестве до 40% от массы металла без большого окисления легирующих добавок и сэкономить дорогостоящие ферросплавы. Несмотря на ограничение окислительного периода, при этом способе выгорает до 60%) Si; 30% Мn; 15% С и 10% W. Почти полностью окисляются титан и алюминий. Восстановительный период проводят под белым или карбидным шлаком. За счет сокращения длительности передела производительность печи возрастает на 10—20%, а расход электроэнергии уменьшается на 12—15%. Выплавка стали и сплавов этим способом непрерывно расширяется.

Технико-экономические показатели работы дуговых печей

Длительность плавки с окислением в 40-т печи составляет 5—7 ч, плавки методом переплава 4—5 ч; применение кислорода сокращает плавку на 10—20% и повышает производительность на 10—25%. Производительность крупных дуговых печей при выплавке нелегированной стали достигает 25—30 т/ч. Выход годных слитков составляет 89—92%. В себестоимости простой легированной стали, например шарикоподшипниковой, доля расходов на шихтовые материалы составляет около 50%, а при выплавке нержавеющей стали до 99,5%- Расход электроэнергии в печах емкостью 30—50 т равен 650—750 кВт•ч/т.

Вакуумная дуговая плавка

Вакуумную плавку применяют для переплава стали и сплавов с целью облагораживания металла; уменьшения в нем газов, неметаллических включений и получения плотного однород ного слитка. Из металла, выплавленного в электродуговых или других печах, изготавливают расходуемый электрод, который устанавливают в вакуумной камере. При обычном давлении (0,7— 7 Н/м 2 ) включают дугу между электродом и первоначально затравкой в кристаллизаторе, а потом формирующимся слитком в кристаллизаторе. Плавку ведут на постоянном токе. Конец электрода непрерывно оплавляется и металл каплями падает в кристаллизатор, эффективно при этом дегазируясь. При переплаве удаляется до 80% водорода (от начального его содержания в металле) и до 50% азота. Металл быстро кристаллизуется, в верхней же части кристаллизатора сохраняется жидкая ванна, в которой сосредоточиваются загрязнения. Вакуумной дуговой плавкой в настоящее время получают высококачественные слитки массой до 30 т.

Электрошлаковый переплав

Этот способ получения высококачественной стали и сплавов более прост и эффективен, чем вакуумная индукционная плавка и даже дуговой переплав расходуемого электрода. Выплавленный в сталеплавильном агрегате металл отковывают или прокатывают на круг и используют в качестве расходуемого электрода. Переменный ток подводят к расходуемому электроду (рис. 2), конец которого погружен в ванну с синтетическим легкоплавким шлаком. Состав шлака может быть различен, например: 70% CaF2+30% Al2O3. В составы шлака могут входить СаО и ТіO2.

Источником тепла является шлаковая ванна, нагревающаяся до температуры > 1700° С проходящим через нее током. Конец электрода непрерывно оплавляется, а капли металла проходят сквозь слой шлака, очищаясь от вредных примесей, неметаллических включений и газов. Капли металла собираются под шлаком в металлическую ванну, из которой начинается кристаллизация. В результате електрошлакового переплава кислород в металле снижается в два раза, сера — в 2—3 раза. Слитки, полученные электрошлаковым переплавом, отличаются плотностью и однородностью. В настоящее время получают слитки массой до 40 т. Стоимость электрошлакового переплава в не сколько раз ниже вакуумно-дугового.

Рис. 2. Схема електрошлакового переплава расходуемого электрода:

1 — расходуемый электрод; 2 — шлаковая ванна; 3 — на правление конвективных по токов; 4 —капли электродного металла; 5 — металлическая ванна; 6 — слиток; 7 —шлаковый гарниссаж; 8 стенка кристаллизатора; 9 — воздушный зазор; 10 — затравка; 11 — поддон

Статья на тему Выплавка стали в индукционных печах

Ссылка на основную публикацию
Adblock detector