Теплоемкость и теплопроводность металлов и сплавов

Теплопроводность утеплителей назначение, таблица, критерии выбора

Выбор теплоизоляционных материалов на современном рынке огромен. Производители выпускают различные по структуре, плотности, звукоизоляционным характеристикам и влагостойкости модели. Потребителям необходимо знать теплопроводность утеплителей и критерии подбора. Подробное сравнение всех видов поможет найти идеальный для постройки материал.

Понятие теплопроводности

Под теплопроводностью понимается передача энергии тепла от объекта к объекту до момента теплового равновесия, т.е. выравнивания температуры. В отношении частного дома важна скорость процесса – чем дольше происходит выравнивание, тем меньше остывает конструкция.

В числовом виде явление выражается через коэффициент теплопроводности. Показатель наглядно выражает прохождение количества тепла за определенное время через единицу поверхности. Чем больше величина, тем быстрее утекает тепловая энергия.

Теплопередача различных материалов указывается в характеристиках изготовителя на упаковке.

Факторы влияния на теплопроводность

Теплопроводность зависит от плотности и толщины теплоизолята, поэтому важно учитывать ее при покупке. Плотность – это масса одного кубометра материалов, которые по этому критерию классифицируются как очень легкие, легкие, средние и жесткие. Легкие пористые изделия применяются для покрытия внутренних стен, несущих перегородок, плотные – для наружных работ.

Модификации с меньшей плотностью легче по весу, но имеют лучшие параметры теплопроводности. Сравнение утеплителей по плотности представлено в таблице.

Материал Показатель плотности, кг/м3
Минвата 50-200
Экструдированный пенополистирол 33-150
Пенополиуретан 30-80
Мастика из полиуретана 1400
Рубероид 600
Полиэтилен 1500

Чем выше плотность, тем меньше уровень пароизоляции.

Толщина материала также влияет на степень теплопередачи. Если она избыточная, нарушается естественная вентиляция помещений. Маленькая толщина становится причиной мостов холода и образования конденсата на поверхности. В результате стена покроется плесенью и грибком. Сравнить параметры толщины материалов можно в таблице.

Материал Толщина, мм
Пеноплекс 20
Минвата 38
Ячеистый бетон 270
Кладка из кирпича 370

При подборе толщины стоит учитывать климат местности, материал постройки.

Характеристики разных материалов

Перед рассмотрением таблицы теплопроводности утеплителей имеет смысл ознакомиться с кратким обзором. Информация поможет застройщикам разобраться в специфике материала и его назначении.

Пенопласт

Плитный материал, изготовленный посредством вспенивания полистирола. Отличается удобством раскроя и монтажа, низкой теплопроводностью – в сравнении с другими изоляторами пенопласт легче. Преимущества изделия – недорогая стоимость, стойкость к влажной среде. Минусы пенопласта – хрупкость, быстрая возгораемость. По этой причине плиты толщиной 20-150 мм используются для теплоизоляции легких наружных конструкций – фасадов под штукатурные работы, стены цоколей и подвалов.

При горении пенопласта выделяются токсичные вещества.

Экструдированный пенополистирол

Вспененный полистирол с экструзией отличается стойкость к воздействию влажной среды. Материал легко раскраивается, не горит, прост в укладке и транспортировке. У плит помимо низкой теплопроводности – высокая плотность и прочность на сжатие. Среди российских застройщиков популярен экструдированный пенополистирол брендов Техноплекс и Пеноплекс. Его применяют для теплоизоляции отмостки и ленточного фундамента.

Минеральная вата

Коэффициент теплопроводности минеральной ваты – 0,048 Вт/(м*С), что больше пенопласта. Материал изготавливается на основе горных пород, шлака или доломита в форме плит и рулонов, у которых разный индекс жесткости. Для утепления вертикальных поверхностей допускается применять жесткие и полужесткие изделия. Горизонтальные конструкции лучше утеплять при помощи легких минплит.

Несмотря на оптимальный индекс теплопроводности, у минеральной ваты маленькая устойчивость к влажной среде. Плиты не подойдут для утепления подвальных помещений, парилок, предбанников.

Применение минваты с низкой теплопроводностью допускается только при наличии пароизоляционного и гидроизоляционного слоев.

Базальтовая вата

Основой для изоляции является базальтовый вид горной породы, который раздувается при нагреве до состояния волокон. При изготовлении также добавляют нетоксичные связующие компоненты. На российском рынке продукция бренда Роквул, на примере которой можно рассмотреть особенности утеплителя:

  • не подвергается возгоранию;
  • отличается хорошим показателем тепло- и звукоизоляции;
  • отсутствие слеживания и уплотнения в процессе эксплуатации;
  • экологически чистый строительный материал.

Параметры теплопроводности позволяют использовать каменную вату для наружных и внутренних работ.

Стекловата

Стекловатный утеплитель изготавливается из буры, известняка, соды, просеянного доломита и песка. Для экономии на производстве применяют стеклобой, что не нарушается свойства материала. К преимуществам стекловаты относятся высокие показатели тепло- и звукоизоляции, экологическая чистота и низкая стоимость. Минусов больше:

  • Гигроскопичность – впитывает воду, вследствие чего теряет утепляющие характеристики. Для предотвращения гниения и разрушения конструкции укладывают между пароизоляционными слоями.
  • Неудобство монтажа – волокна с повышенной хрупкостью распадаются, могут вызывать жжение и зуд кожи.
  • Непродолжительная эксплуатация – через 10 лет происходит усадка.
  • Невозможность применения для утепления влажных комнат.

При работе со стекловатой нужно защищать кожу рук перчатками, лицо – очками или маской.

Вспененный полиэтилен

Рулонный полиэтилен с пористой структурой имеет дополнительный отражающий слой из фольги. Преимущества изолона и пенофола:

  • маленькая толщина – от 2 до 10 мм, что в 10 раз меньше обычных изоляторов;
  • возможность сохранения до 97 % полезного тепла;
  • стойкость к воздействию влаги;
  • минимальная теплопроводность за счет пор;
  • экологическая чистота;
  • отражающий эффект, за счет которого аккумулируется тепловая энергия.

Рулонная теплоизоляция подходит для укладки во влажных комнатах, на балконах и лоджиях.

Напыляемая теплоизоляция

Если обратиться к таблице, то видно, что напыляемые виды заменяют 10 см минваты. Они выпускаются в баллонах, напоминают монтажную пену и наносятся при помощи специального инструмента. Напыляемый утеплитель бывает разной жесткости, в емкости также присутствуют пенообразователи – полиизоционатом и полиолом. По типу основного компонента изоляция бывает:

  • ППУ. Пенополиуретан с открытой ячеистой структурой прочен, теплоэффективен. При наличии закрытых пустот в составе – может пропускать пар.
  • Пеноизольная. Жидкий пенопласт на карбамидоформальдегидной основе отличается паропроницаемостью, стойкость к возгоранию. Наносится посредством заливки. Оптимальная температура затвердевания – от +15 градусов.
  • Жидкая керамика. Керамические компоненты расплавляются до жидкого состояния, потом смешиваются полимерными веществами и пигментами. Получаются вакуумированные полости. Наружное утепление обеспечивает защиту здания на 10 лет, внутреннее – на 25 лет.
  • Эковата. Целлюлоза измельчается до состояния пыли, приобретает клейкость при попадании воды. Материал подходит для работы на влажных стеновых поверхностях, но не используется рядом с каминными трубами, дымоходами и печами.

Напыляемые утеплители отличаются хорошей сцепкой с поверхностями, для которых применялись дерево, кирпич или газобетон.

Таблица коэффициентов теплопроводности разных материалов

На основе таблицы с коэффициентами теплопроводности строительных материалов и популярных утеплителей можно сделать сравнительный анализ. Он обеспечит подбор оптимального варианта теплоизоляции для строения.

Читайте также:  Трубогиб для профильной трубы своими руками
Материал Теплопроводность, Вт/м*К Толщина, мм Плотность, кг/м³ Температура укладки, °C Паропроницаемость, мг/м²*ч*Па
Пенополиуретан 0,025 30 40-60 От -100 до +150 0,04-0,05
Экструдированный пенополистирол 0,03 36 40-50 От -50 до +75 0,015
Пенопласт 0,05 60 40-125 От -50 до +75 0,23
Минвата (плиты) 0,047 56 35-150 От -60 до +180 0,53
Стекловолокно (плиты) 0,056 67 15-100 От +60 до +480 0,053
Базальтовая вата (плиты) 0,037 80 30-190 От -190 до +700 0,3
Железобетон 2,04 2500 0,03
Пустотелый кирпич 0,058 50 1400 0,16
Деревянные брусья с поперечным срезом 0,18 15 40-50 0,06

Для параметров толщины применялся усредненный показатель.

Иные критерии подбора утеплителей

Теплоизоляционное покрытие обеспечивает снижение теплопотерь на 30-40 %, повышает прочность несущих конструкций из кирпича и металла, сокращает уровень шума и не забирает полезную площадь постройки. При выборе утеплителя помимо теплопроводности нужно учитывать другие критерии.

Объемный вес

Данная характеристика связана с теплопроводностью и зависит от типа материала:

  • Минераловатные продукты отличаются плотностью 30-200 кг/м3, поэтому подходят для всех поверхностей строения.
  • Вспененный полиэтилен имеет толщину 8-10 мм. Плотность без фольгирования равняется 25 кг/м3 с отражающей основой – около 55 кг/м3.
  • Пенопласт отличается удельным весом от 80 до 160 кг/м3, а экструдированный пенополистирол – от 28 до 35 кг/м3. Последний материал является одним из самых легких.
  • Полужидкий напыляемый пеноизол при плотности 10 кг/м3 требует предварительного оштукатуривания поверхности.
  • Пеностекло имеет плотность, связанную со структурой. Вспененный вариант характеризуется объемным весом от 200 до 400 кг/м3. Теплоизолят из ячеистого стекла – от 100 до 200 м3, что делает возможным применение на фасадных поверхностях.

Чем меньше объемный вес, тем меньше затрачивается материала.

Способность держать форму

Производители не указывают формостабильность на упаковке, но можно ориентироваться на коэффициенты Пуассона и трения, сопротивления изгибам и сжатиям. По стабильности формы судят о сминаемости или изменении параметров теплоизоляционного слоя. В случае деформации существуют риски утечки тепла на 40 % через щели и мосты холода.

Формостабильность стройматериалов зависит от типа утеплителя:

  • Вата (минеральная, базальтовая, эко) при укладке между стропилами расправляется. За счет жестких волокон исключается деформация.
  • Пенные виды держат форму на уровне жесткой каменной ваты.

Способность изделия держать форму также определяется по характеристикам упругости.

Паропроницаемость

Определяет «дышащие» свойства материала – способность к пропусканию воздуха и пара. Показатель важен для контроля микроклимата в помещении – в законсервированных комнатах образуется больше плесени и грибка. В условиях постоянной влажности конструкция может разрушаться.

По степени паропроницаемости выделяют два типа утеплителей:

  • Пены – изделия, для производства которых применяется технология вспенивания. Продукция вообще не пропускает конденсат.
  • Ваты – теплоизоляция на основе минерального или органического волокна. Материалы могут пропускать конденсат.

При монтаже паропроницаемых ват дополнительно укладывают пленочную пароизоляцию.

Горючесть

Показатель, на который ориентируются при строительстве наземных частей жилых зданий. Классификация токсичности и горючести указана в ст. 13 ФЗ № 123. В техническом регламенте выделены группы:

  • НГ – негорючие: каменная и базальтовая вата.
  • Г – возгораемые. Материалы категории Г1 (пенополиуретан) отличаются слабой возгораемостью, категории Г4 (пенополистирол, в т.ч. экструдированный) – сильногорючие.
  • В – воспламеняемые: плиты из ДСП, рубероид.
  • Д – дымообразующие (ПВХ).
  • Т – токсичные (минимальный уровень – у бумаги).

Оптимальный вариант для частного строительства – самозатухающие материалы.

Звукоизоляция

Характеристика, связанная с паропроницаемостью и плотностью. Ваты исключают проникновение посторонних шумов в помещении, через пены проникает больше шума.

У плотных материалов лучше шумоизоляционные свойства, но укладка осложняется толщиной и весом. Оптимальным вариантом для самостоятельных теплоизоляционных работ будет каменная вата с высоким звукопоглощением. Аналогичные показатели – у легкой стекловаты или базальтового утеплителя со скрученными длинными тонкими волокнами.

Нормальный показатель звукоизоляции – плотность от 50 кг/м3.

Практическое применение коэффициента теплопроводности

После теоретического сравнения материалов нужно учитывать их разделение на группы теплоизоляционных и конструкционных. У конструкционного сырья – самые высокие индексы теплопередачи, поэтому оно подходит для возведения перекрытий, ограждений или стен.

Без использования сырья со свойствами утеплителей понадобится укладывать толстый слой теплоизоляции. Обратившись к таблице теплопроводности, можно определить, что низкий теплообмен конструкций из железобетона будет только при их толщине 6 м. Готовый дом будет громоздким, может просесть под почву, а затраты на строительство не окупятся и через 50 лет.

Достаточная толщина теплоизоляционного слоя – 50 см.

Применение теплоизоляционных материалов обеспечивает сокращение затрат на строительные мероприятия и снижает переплаты за энергию зимой. При покупке утеплителя нужно учитывать параметры теплопроводности, основные характеристики, стоимость и удобство самостоятельного монтажа.

Таблица теплопроводности материалов и утеплителей

Для большинства людей холодные зимы давно уже стали привычным явлением. В связи с этим, материалы для теплоизоляции были и остаются очень востребованными. Для того, чтобы не ошибиться с выбором и приобрести подходящий для конкретных условий материал высокого качества, нужно будет учесть особенности таблицы теплопроводности материалов и утеплителей.

  1. Потребность в теплоизоляции стен
  2. Сравнение показателей теплопроводности материалов
  3. Сравнение основных характеристик утеплителей
  4. Коэффициент сопротивления
  5. Плотность и теплоемкость
  6. Преимущества и недостатки теплоизоляторов
  7. Пенополиуретан
  8. Пенополистирол (или пенопласт)
  9. Экструдированный пенополистирол
  10. Базальтовая (или каменная) вата
  11. Эковата
  12. Изолон
  13. Пенофол
  14. Заключение
  15. Видео про таблицу теплопроводности

Потребность в теплоизоляции стен

Обоснованность применения теплоизоляции состоит в следующем:

  1. Сбережение тепла в помещениях в холодный период и прохлады в жару. В многоэтажном жилом доме теплопотери через стены могут достигать до 30 % или 40 %. Чтобы снизить потери тепла понадобятся особые теплоизолирующие материалы. В зимний период использование электрических обогревателей воздуха может способствовать увеличению расходов на оплату электроэнергии. Этот убыток гораздо более выгодно компенсировать за счет применения теплоизоляционного материала высокого качества, который поможет обеспечить комфортный микроклимат в помещении в любой сезон. Стоит заметить, что грамотное утепление сведет к минимуму и затраты на использование кондиционеров.
  2. Продление срока эксплуатации несущих конструкций здания. В случае с промышленными строениями, которые возводятся с использованием металлического каркаса, теплоизолятор выступает надежной защитой поверхности металла от процессов коррозии, которая может очень пагубно отразиться на конструкциях данного типа. Что касается срока службы кирпичных зданий, он определяется числом циклов заморозки-разморозки материала. Влияние этих циклов тоже нивелирует утеплитель, поскольку в теплоизолированном здании точка росы сдвигается в сторону утеплителя, оберегая стены от разрушения.
  3. Изоляция от шума. Защитой от все увеличивающегося шумового загрязнения служат материалы со свойствами шумопоглощения. Это могут быть толстые маты или стеновые панели, способные отражать звук.
  4. Сохранение полезной площади помещений. Применение теплоизолирующих систем позволит снизить уровень толщины наружных стен, а внутренняя площадь зданий при этом увеличится.
Читайте также:  Тюремные ножи виды с названиями и фото

Сравнение показателей теплопроводности материалов

На сегодняшний день большинство производителей материалов для теплоизоляции готовы предложить застройщикам широкий ассортимент продукции. И каждый из них будет заверять, что именно выпускаемый им утеплитель станет идеальным выбором. Подобное разнообразие материалов для строительства затрудняет процесс принятия решения в пользу того или иного теплоизолятора. Поэтому цель этой статьи – помочь вам сделать самостоятельный выбор, сравнив показатели теплопроводности различных утеплителей и другие ключевые характеристики.

Сравнение основных характеристик утеплителей

  • Теплопроводность. Чем более низким окажется данная характеристика материала, тем меньший слой утеплителя вам понадобится уложить. А это означает, что удастся сократить расходы на приобретение материалов. Но это утверждение будет справедливо только тогда, когда материалы будут находиться в одном ценовом диапазоне. Помимо этого, меньший слой утеплителя заберет меньше свободного пространства.
  • Влагопроницаемость. Сниженная проницаемость для пара и влаги способствует увеличению эксплуатационного срока теплоизоляции, а также позволяет снизить негативное влияние влаги на теплопроводность материала при его использовании. Но это может увеличить вероятность выпадения конденсата на конструктивных элементах, если не будет должной вентиляции.
  • Пожаробезопасность. При использовании утепляющих материалов в котельной или бане важно, чтобы они были негорючими и могли выдерживать высокотемпературное воздействие. Если же идет теплоизоляция ленточного фундамента или отмостки здания, более важными параметрами окажутся стойкость к влаге и уровень прочности.
  • Доступность и легкость монтажа. Теплоизолятор должен быть экономичен по стоимости, в противном случае утепление строения окажется нецелесообразным. Не менее важно, чтобы вы могли провести работы по утеплению кирпичного фасада самостоятельно, без наемных работников и аренды дорогостоящего монтажного оборудования.
  • Экологичность. Все используемые в строительстве материалы не должны представлять опасности для окружающей среды и здоровья человека. Особо стоит отметить звукоизолирующий эффект, который наиболее востребован в городской среде и позволяет защитить жилище от проникновения уличного шума.

Коэффициент сопротивления

Помимо прочего, выполняя расчеты важно учитывать коэффициент U, отвечающий за сопротивление конструктивных элементов теплопередаче. Он никак не относится к основным качествам утеплителей, но поможет вам не ошибиться при выборе среди большого количества разных утеплителей. Коэффициент U – это соотношение разности температур с обеих сторон изолятора к объему теплового потока, который проходит через него. Для верного расчета теплового сопротивления стен и перекрытий потребуется таблица, в которой приведены расчеты теплопроводности различных материалов для строительства.

Сделать все нужные вычисления можно и самому. Достаточно разделить толщину материала на его коэффициент теплопроводности. В случае с теплоизоляцией, информация о показателе теплопроводности обычно указывается на упаковке с утеплителем. Если речь идет о конструктивных элементах строения, процесс вычисления окажется более сложным. Если толщину получится измерить самому, то показатели теплопроводности таких материалов как кирпич, бетон или древесина потребуется найти в специальных пособиях.

Не редкость, когда для утепления пола, потолка и стен в одном здании применяются различные типы материалов, так как для каждой поверхности приходится отдельно рассчитывать коэффициент теплопроводности.

Плотность и теплоемкость

Пористость является отражением процентного соотношения числа воздушных пор к общему объему материала. Поры могут различаться по структуре – открытой или закрытой, а также по размеру – крупные и мелкие.

Крайне важно убедиться, что поры равномерно распределяются в структуре утеплителя, это будет лучшим показателем качества материала. В некоторых случаях уровень пористости может достигать 50 %, а в случае использования ячеистой пластмассы показатель составит от 90 % до 98 %.

Плотность – это важная характеристика, которая напрямую влияет на массу теплоизолятора. При помощи специальной таблицы возможно точно рассчитать эти два параметра. Если вам известна плотность, вы без труда определите увеличение уровня нагрузки на перекрытия или стены дома.

Теплоемкость является показателем, который наглядно демонстрирует количество тепла, аккумулируемого утеплителем.

Биологическая стойкость – это качество сопротивления материала действию факторов биологического происхождения, таких как патогенная микрофлора.

Огнеупорность означает устойчивость теплоизоляции к воздействию огня. Она отличается от показателя пожаробезопасности и путать их не стоит.

Могут различаться и другие характеристики, такие как прочность к изгибам и механическим воздействиям, износу и влиянию отрицательных температур.

Преимущества и недостатки теплоизоляторов

Пенополиуретан

Считается одним из самых эффективных утеплителей современности.

Преимущества: монтаж однородного бесшовного покрытия, долгий срок службы, отличная изоляция от холода и влаги.

Недостатки: высокая стоимость материала, слабая устойчивость к УФ-излучению.

Пенополистирол (или пенопласт)

Является очень востребованным и применяется в качестве изоляции для разных типов помещений.

Преимущества: невысокая теплопроводность, доступная стоимость, простота монтажа, непроницаемость для влаги.

Недостатки: хрупкий, легко воспламеняется, способствует образованию конденсата.

Экструдированный пенополистирол

Прочный и простой в работе материал, его легко раскроить на фрагменты необходимого размера и формы обычным острым ножом.

Преимущества: очень низкий коэффициент теплопроводности, плохая водопроницаемость, высокая прочность на сжатие, легкий монтаж, не боится плесени и гниения, может эксплуатироваться при температурах от -50⸰С до +75⸰С.

Недостатки: значительно дороже, чем пенопласт, восприимчив к растворителям на органической основе, способствует возникновению конденсата.

Базальтовая (или каменная) вата

Разновидность минеральной ваты, которая изготавливается на основе природного базальта.

Преимущества: противостоит возникновению грибков, звукоизолирует, имеет высокую прочность к механическим повреждениям, огнеупорна, негорюча.

Недостатки: в сравнении с аналогами имеет повышенную стоимость.

Эковата

Утепляющий материал, производимый из природных материалов , таких как древесные волокна и минералы.

Преимущества: изоляция посторонних звуков, экологическая чистота, стойкость к влаге, демократичная стоимость.

Недостатки: при эксплуатации возрастает ее теплопроводность, нужно использовать профессиональное оборудования для монтажа, может дать усадку.

Изолон

Один из высокотехнологичных утеплителей, который производят из пенополиэтилена. Очень востребован.

Преимущества: пониженная теплопроводность и паропроницаемость, высокие показатели шумоизоляции, удобно резать и мотнировать, экологичен, гибкий и маловесный.

Недостатки: невысокая прочность, нужно предусмотреть обязательный вентиляционный зазор.

Читайте также:  Самый простой и надежный способ соединения проводов - Семейный-Автомобиль

Пенофол

Теплоизолятор, отвечающий всем основным требованиям, которые предъявляются к качеству материала при утеплении разнообразных помещений и конструкций.

Преимущества: экологическая чистота, хорошая способность отражать тепло, качественная шумоизоляция, непроницаемость для влаги, негорючесть, комфортность транспортировки и монтажа, может нейтрализовать негативное воздействие радиации.

Недостатки: пониженная жесткость, сложности с закреплением материала, при теплоизоляции только пенофола будет недостаточно.

Заключение

Все сильные и слабые стороны рассмотренных утеплителей, представленные в этом обзоре, облегчат муки выбора подходящего материала еще на стадии проекта здания. Но не забывайте, что основополагающей характеристикой материала для теплоизоляции все-таки является его теплопроводность.

Теплопроводные материалы в электронных модулях

Решение проблемы теплоотвода — сложная инженерная задача. Следует понимать, что в любой электронной системе есть «горячие точки», которые при неумелом проектировании теплоотводов способны дать сбои. И как показывает практика, они-то и возникают в самые ответственные моменты работы электронных систем, когда нагрузка на элементы максимально высока.

Даже если проектированием системы занимается профессионал, учесть все нюансы удается не всегда. И некогда оптимальная система с ростом мощности может оказаться неспособной выполнять свои функции. С другой стороны, установка дополнительных систем охлаждения вряд ли будет экономически и технологически оправданной, поскольку приведет к усложнению и возрастанию веса конструкции.

Новое решение старой проблемы предлагает немецкая компания MSC-Polymer, которая поставляет на российский рынок материалы — высококачественные и класса Hi-End. Для решения проблемы теплоотвода MSCPolymer предлагает композиционный материал COBRITHERM (рис. 1).

Материал COBRITHERM наиболее актуален для производства осветительных приборов: световых табло, солнечных батарей, конвертеров постоянного и переменного тока, источников питания и другой электронной техники. Он позволяет отводить тепло по всей площади печатной платы без установки дополнительных систем охлаждения, поскольку сам является радиатором и рассеивателем тепла.

В Испании было построено высотное здание (рис. 2) с подсветкой из множества мощных светодиодов, установленных на групповой подложке (ГП) из материала COBRITHERM, — в качестве демонстрации его возможностей.

COBRITHERM обрабатывается подобно фольгированным стеклотекстолитам типа FR-4 и подходит для бессвинцовой технологии пайки. Материал отличается высокой надежностью благодаря использованию керамики, тепловыми и диэлектрическими характеристиками, пониженным нагревом компонентов, что приводит к увеличению срока их службы.

COBRITHERM представляет собой слоистый материал: алюминиевая подложка, покрытая электролитической медью, между которыми находится керамическая прослойка. Производство такого соединения выполняется по специальной технологии горячего прессования.

Конструкция COBRITHERM

На рис. 3 представлена эволюция конструкции материала COBRITHERM.

Усовершенствованная конструкция COBRITHERM имеет улучшенные характеристики по теплопроводности, термостойкости, пробивному напряжению и прочности на отрыв.

Первый слой — это электролитически осажденная медь (HTE) толщиной 18–210 мкм. Такой тип фольги, как известно, предпочтительнее, так как имеет видоизмененную структуру меди, более приспособленную к отслаиванию от диэлектрика. Рисунок печатной платы на медном слое формируется традиционно — методом фотолитографии (негативная технология).

Полимер-керамика

Второй слой обладает высокой теплопроводностью и представляет собой особый диэлектрик — смесь полимера и керамики толщиной 50–150 мкм. Полимер является электроизолирующим элементом между проводящим рисунком и теплоотводом, керамика, в свою очередь, обладает отличной теплопроводностью. Вместе эти две составляющие дают низкое тепловое сопротивление и отличные диэлектрические свойства (таблица 1).

Алюминий

Алюминиевая подложка в первую очередь несет на себе функцию механической опоры платы. А также благодаря своим температурным характеристикам является отличным теплоотводом. Идеальное соединение источника тепловыделения с токопроводящим рисунком платы и адгезивным подслоем (керамика) способствует более полной теплопередаче и рассеиванию тепла на металлическом основании. В COBRITHERM используется алюминий марки 5052 H34, который обладает оптимальной теплопроводностью, прочностью, что позволяет обрабатывать его на станках с ЧПУ (традиционным способом) для получения сложного фасонного контура ПП. В продаже есть COBRITHERM на основе сплава алюминия 6082 T6. Сравнительные характеристики сплавов представлены в таблице 2.

Стандартная толщина алюминиевой подложки: 1; 1,5; 2; 3 мм.

COBRITHERM поставляется также в виде двустороннего ламината. Такая конструкция позволяет монтировать элементы сразу с двух сторон и не требует наличия какой-либо дополнительной изоляции, поскольку подслой из полимер-керамики выполняет эту функцию. Это способствует увеличению плотности монтажа и снижению стоимости изделия. Материал COBRITHERM достаточно жесткий и прочный, так что печатные платы на его основе могут являться элементами конструкции электронных устройств и напрямую крепиться к кожуху бортовой техники для кондуктивного теплоотвода.

Для того чтобы алюминий не влиял на состав ванн химической обработки, обратная сторона материала защищена полиэстеровой пленкой толщиной 30 мкм, которая блокирует доступ электролитов к алюминиевой подложке на всем цикле производства, включая горячее лужение.

Рекомендации по конструкции

Ввиду того, что медь и алюминий имеют разные коэффициенты термического расширения, производитель разделяет их слоем из полимер-керамики, для того чтобы минимизировать возникновение короблений печатной платы. Тем не менее, при выборе конструкции печатной платы следует соблюдать соотношение толщины алюминия к меди, оно должно быть не более 1/10.

Большие медные контактные площадки способствуют более эффективному отводу тепла от кристалла, в отличие от проводящих клеев.

Необходимо помнить, что с уменьшением толщины алюминия возникает импеданс между высоко нагруженными элементами. По этой причине мы рекомендуем использовать более толстый слой алюминия для высоконагруженных элементов.

Необходимо наносить паяльную маску на печатную плату из COBRITHERM, максимально маскируя диэлектрик и топологию токопроводящего рисунка. Это снижает риск статического и электрического пробоя между радиоэлементами и максимально защитит плату от воздействия внешних факторов.

Для предотвращения риска электрического разряда между торцом металлической платы и трассой, следует формировать топологию проводящего рисунка вдали от края печатной платы.

COBRITHERM совместим со стандартными финишными покрытиями, такими как иммерсионное олово, золото, HASL, OSP, а также с технологией бессвинцовой пайки (пиковая температура — 300 °С).

При работе с покрытием Ni-Au нужно внимательно следить за загрязнением химических растворов алюминием, но производитель принимает все меры по защите торцов и обратной стороны материала COBRITHERM. Для этих целей рекомендуется проконсультироваться с вашим поставщиком химических составов.

При изготовлении печатных плат на основе алюминия используются традиционные технологии обработки, материал раскраивается вырубкой, фрезерованием, пилением. Для получения сквозных отверстий на станках с ЧПУ, во избежание поломок инструмента, необходимо учесть жесткость обрабатываемого материала.

Ссылка на основную публикацию
Adblock detector