Электрический дроссель принцип действия, назначение, применение

Цена дроссельной заслонки ВАЗ 2114 8 клапанов

Правильный выбор дроссельной заслонки имеет важное значение для улучшения качества работы двигателя. Прочтя статью вы разберётесь в том, как работает этот узел, и какие способы управления для него используются в автомобилях. Рассказано о том, какая цена дроссельной заслонки ВАЗ 2114 8 клапанов и на что нужно обращать внимание при её приобретении.

Цены на электронные дроссели ВАЗ 2114

Производитель Цена (руб)
S1 TEAM 1090
ООО ВИЭ 1940
DELPHI 4900
Механические дроссели от 1150

Минимальная цена электронной дроссельной заслонки ВАЗ 2114 составляет 1000-1100 руб. Вот несколько примеров актуальных цен на дроссели различных производителей:

  • S1 TEAM — 1090 руб.
  • ООО ВИЭ — 1940 руб.
  • DELPHI – цена этой дроссельной заслонки Е газ на ВАЗ 2114 составляет 4900 руб.

Цены на механические дроссели ВАЗ 2114

Наиболее известным производителем этих узлов является АВТОВАЗ. Для ВАЗ 2114 можно приобрести как изделие стандартного размера, так и увеличенного. Дроссельная заслонка ВАЗ 2114, цена которой составляет 1150 руб. может иметь диаметр 46, 52, 54 или 46 мм.

К их достоинствам можно отнести снижение скорости воздушного потока, увеличение производительности системы впуска, улучшение реакции на нажатие педали газа.

Сколько стоит дроссельная заслонка на ВАЗ 2114 зависит от комплектации. Она определяется следующими обстоятельствами:

  1. Использование контактного или бесконтактного датчика положения заслонки дросселя.
  2. Наличие в комплекте прокладок и отводящего шланга.
  3. Присутствие штуцера подогрева дросселя.

Поэтому стоимость может существенно отличаться. Отечественные производители могут продавать стандартные механические дроссели без датчика положения от 990 руб. Более крупные будут стоить от 1100 рублей и выше. Усовершенствованные узлы могут стоять от 2000 до 4000 тысяч рублей или больше.

Виды дроссельных узлов ВАЗ 2114

В камеру сгорания поступает смесь воздуха с бензином. Для того, чтобы сгорание топлива происходило нужным образом, необходимо, чтобы бензин и воздух находились в строго определённой пропорции. Дроссельная заслонка помогает дозировать количество воздуха, которое поступает для сгорания.

В процессе работы она может загрязняться. Если её не очистить, то это приведёт к проблемам при запуске двигателя или к снижению мощности мотора. Проблемы могут возникать из-за загрязнённого воздуха или замасливания.

Для различной мощности и скорости движения машины потребуется различное соотношение этих частей. В соответствии с принципом управления дроссельные заслонки бывают механическими или электронными.

В первом случае управление происходит с помощью механического тросика. Он присоединён к педали газа. Водитель регулирует работу дросселя, нажимая на эту педаль. При этом тросик натягивается, смещая полукруглую деталь, находящуюся на одной оси вращения с заслонкой.

В результате изменения положения дросселя отверстие увеличивается или уменьшая, влияя на количество воздуха, поступающего в камеру сгорания. Такой способ управления дросселем является типичным для относительно недорогих автомобилей.

Электронная дроссельная заслонка

В современных моделях машин применяется электронное управление. Водитель использует электронную педаль газа. При нажатии или отпускании педали соответствующий сигнал поступает в электронный блок управления. Затем в модуль управления дросселем поступает команда, заставляющая деталь вести себя нужным образом.

Заслонка может поменять своё расположение также в следующих случаях:

  1. Во время впрыскивания смеси или при зажигании.
  2. Если достигнута нужная скорость работы мотора.
  3. Когда машина начинает движение.
  4. При ускорении.

Дроссельная заслонка на ВАЗ 2114 с электронной педалью газа более удобна. В этом случае электронный блок управления дросселем получает для принятия решения комплексную информацию, обеспечивая более гибкое управление дросселем. В результате не только непосредственно выполняется управление работой мотора, но и происходит оптимизация. Это проявляется в следующем:

  1. Уверенная работа на холостых оборотах.
  2. Быстрое достижение нужной скорости вращения.
  3. Обеспечивается наиболее экономное расходование топлива дросселем.

Дополнительно можно отметить улучшенные экологические показатели и возрастание безопасности эксплуатации автомобиля. Цена дросселя на ВАЗ 2114 определяется диаметром, способом управления и комплектацией.

О размерах дроссельной заслонки

Стандартная деталь имеет диаметр, равный 46 мм. Однако в продаже можно встретить дроссели с диаметром 52, 54, 56 или 60 мм. Они применяются в тех случаях, когда делают тюнинг автомобиля. Считается, что их использование позволяют увеличить мощность работы двигателя. Это связано со следующим.

Отличия стандартного дросселя (слева 54 справа 46)

Большее отверстие дросселя позволяет подать больше воздуха в бензиновую смесь, поступающую в камеру сгорания. При этом не только увеличивается её объём, но и улучшается дисперсность бензина. Состав смеси становится более равномерным. В результате действия этих факторов мощность работы немного повышается.

Большинство водителей считает, что использование большего диаметра дросселя способствует увеличению мощности, однако не все с этим согласны. Критики указывают, что работа мотора может в некоторых случаях стать более отрывистой, а электронный блок управления дросселем недостаточно точно корректирует работу заслонки в связи с увеличением диаметра.

Использование электронных устройств позволяет обеспечить оптимальное управление работой заслонки, улучшить качество сгорания смеси, увеличить срок эксплуатации двигателя.

При выборе товара важно обращать внимание на гладкость хода заслонки. Нужно проверить, чтобы не было повреждений или зазубрин. Обычно при покупке гарантия даётся на срок от 3 до 6 месяцев.

Электронный дроссель

Электронный дроссель – это специализированное, употребляемое в среде профессионалов, жаргонное обозначение простейших твердотельных стабилизаторов.

Общая информация

Сложно, сказать, кто придумал это странное название, но оно периодически употребляется радиолюбителями.

Параметрические стабилизаторы – электронные дроссели

Идея использования стабилизаторов вместо фильтров основана не на пустом месте. Суть заключается в желании научиться фильтровать помехи, пока полезный сигнал проходит беспрепятственно. Известно, что дроссель хорошо пропускает низкие частоты. На этом основано его применение в виде фильтра в звукозаписи и воспроизведении мелодий. Слышимые ухом частоты обнаруживают верхний предел в области 15 кГц, хотя отдельные люди слышат до 20 кГц. Если сообщить колебания костям черепа, пределы слышимости распространяются до 220 кГц. Утверждается, что человек через пломбы в зубах способен принимать вещание в сверхнизком диапазоне. Но оставим для спецслужб их игры с разумом и вернёмся к аудиозаписи.

Дроссели здесь используются, чтобы срезать частоты выше 20 кГц. Их ставят перед динамиками для удаления известного радиолюбителям «белого шума». Простые люди звук называют шипением, он навязчив, легко различим даже на фоне громкой музыки. Меломаны стали думать, как избавиться от напасти. Среди них попадались радиолюбители, и кто-то предложил использовать амплитудно-частотную (передаточную) функцию каскада для срезания «белого шума». Эффект основывается на том, что полезного сигнала выше 20 кГц нет, а там лежит значительная часть спектра шипения.

Попробовали сделать и немедленно отметили частичное улучшение. Технологию пустили в ход, единственным недостатком оказались большие габариты дросселя. А среди меломанов ходит легенда – и авторы лично слышали – что в электронных блоках не предполагается твердотельной электроники (транзисторы, тиристоры и пр.). Даже диоды использовать нежелательно. Поэтому люди не согласились бы использовать параметрические стабилизаторы в аппаратуре. Но большой размер дросселя вызывает необходимость заменить его электроникой.

Кратко об обычных дросселях

Дроссель аналогичен катушке индуктивности, но демонстрирует специфическое назначение и ряд обмоток. Без углубления в тему скажем, что предложил свернуть проволоку спиралью Лаплас, потом действие проделали Швейггер, Ампер, Фарадей и прочие учёные. Так на свет, предположительно, в 1820 году появилась катушка индуктивности.

Ключевым свойством, обнаруженным далеко не сразу, стало наличие реактивного сопротивления. Его называли – индуктивностью. Особенность: ток на таком элементе не способен повыситься сразу, значит, срезается и сглаживается его фронт, становится пологим. Это соответствует на уровне спектра фильтрации нижних частот, что применяется меломанами для уменьшения мощности шипения.

Колонка, как правило, включает ряд динамиков. К примеру, три. И шипит самый маленький, предназначенный для воспроизведения высоких частот, к примеру, тонкого пения скрипки. Если аккуратно прикрыть динамик ладонью, «белый шум» пропадает. Это сродни механической фильтрации при помощи руки.

Схема электронного дросселя

Хотим поблагодарить Евгения Карпова. Любой желающий вправе прочесть выложенную им статью «Электронный дроссель», где обсуждаются основные ошибки по конструированию аппаратуры, даются советы по улучшению качества.

Включение с общей базой называется сравнительной схемой. Транзистор оценивает разницу напряжений на базе и коллекторе. Сигнал снимается с эмиттера. Конденсатор С3 заряжается через резистор R5 служа параметрическим стабилизатором (вместо стабилитрона). Необычное решение требуется, чтобы отслеживать относительно медленно меняющийся звуковой сигнал. На конденсаторе неизменно находится его усреднённое значение, так происходит стабилизация. Транзистор следит, чтобы выходной сигнал равнялся (либо оставался пропорционален) напряжению на стабилизаторе.

Так вкратце действует простая схема электронного дросселя. Смысл использования частично раскрывается Евгением Карповым, но рядовым гражданам он неочевиден. Дроссель большой и тяжёлый, занимает много места, делает вдобавок две неполезных вещи:

  1. Вносит в цепь значительное омическое (активное) сопротивление, применяемое в законе Ома для участка цепи.
  2. Обладает индуктивным сопротивлением, сдвигающим фазу между током и напряжением. Специалисты склонны считать это дефектом.

Электронный дроссель позволяет убрать указанные недостатки, но Евгений Карпов отмечает, что размер радиатора для транзистора бывает значительным, что уничтожает преимущество. А необходимость точной настройки не каждому под силу. Тем не менее, электронный дроссель вправе использоваться как представитель простейших видов параметрических стабилизаторов.

Обоснование применения электронного дросселя

Считается, что задачей стабилизатора становится стабилизация напряжения, добиваясь постоянства. В действительности речь обычно идёт о действующем значении. Стабилизатор устроен так, чтобы пропускать медленные составляющие. Допустимо добавление обратной связи, эталонов напряжения, чтобы устранить этот «недостаток».

Радиолюбители намеренно в конструкции электронного дросселя упускают подобные навороты, полученное устройство спокойно плавает вдоль нужных частот. На выходе стоит фильтр из конденсатора C4, резисторы задают рабочую точку транзистору.

Стабилизаторы

Классификация

В глобальном смысле стабилизаторы напряжения делят на два класса:

  • Параметрические.
  • Компенсационные.

Первые обычно опираются на некий эталон. К примеру, простейшим параметрическим стабилизатором становится единственный стабилитрон. Но при этом нельзя добиться высокого выходного напряжения, и ток станет делиться, уходя впустую. Высокие потери, необходимость охлаждения… Это попытались преодолеть в компенсированных стабилизаторах, где в цепь заложена обратная связь. Смысл: сравнить с эталоном не входное напряжение, а выходное и по результатам «теста» провести корректировку коэффициента усилительного каскада.

Электронный дроссель намеренно сделан без обратной связи, чтобы параметры плавали и не мешали полезному сигналу проходить на выход. Электронный дроссель не является параметрическим стабилизатором непосредственно, но представляет намеренно ухудшенный его вариант. Ухудшенный с точки зрения стабильности. Выходной характеристикой идеального считается прямая, не подразумевающая музыки. Вывод:

Электронный дроссель – это параметрический стабилизатор напряжения с намеренно ухудшенными долговременными характеристиками, обеспечивающими постепенный уход напряжения в нужную сторону сообразно форме входного сигнала.

Простейшие схемы стабилизаторов

Выше приводилось упрощённое толкование вопроса – да простят нас истинные радиолюбители. В действительности электронный дроссель использует каскад сравнения из компенсационного стабилизатора. Причём наипростейший из имеющихся, из единственного транзистора. Изложим кратко теорию.

Итак, простейшим параметрическим стабилизатором становится разновидность твердотельного диода – стабилитрон. При превышении напряжением некого порога происходит резкое падение сопротивления p-n-перехода. Стабилитрон, вразрез с обычным диодом, всегда включается навстречу току. На катод нтребуется подать плюс. Значение порога легко изменяется включением между стабилитроном и схемной нейтралью диодов в прямом направлении. На каждом кремниевом p-n-переходе падает 0,5 В. Это порой бывает предпринято для температурной компенсации.

Усложнением схемы является транзисторная, где стабилитрон служит эталоном, а триод занимается стабилизацией. На выходе включается эмиттерный повторитель для улучшения согласования с нагрузкой, а включение по схеме с общей базой стабилизирует ток. Но пора посмотреть на схемы компенсационных стабилизаторов, откуда электронный дроссель кое-что взял.

На рисунке показаны регулирующие элементы из составных транзисторов. Это каскад, на который подаётся петля обратной связи для сравнения с эталоном. Одно из сравниваемых напряжений поступает на эмиттер – от стабилитрона, второе – на базу – из цепи обратной связи. С коллектора снимается сигнал. Транзистор считается симметричным, за исключением мелких деталей, описанных в соответствующей теме (см. биполярный транзистор), допустимо для сравнения использовать базу и коллектор, как в схеме электронного дросселя, приведённой выше.

Исключение – цепь обратной связи из конструкции выкушена. Зато включён вместо эталона конденсатор, заведомо не выдающий постоянное напряжение, радуя радиолюбителя. Постоянная времени берётся такой, чтобы успевал изменяться сигнал согласно полезной частоте (до 20 кГц), а повышенные частоты сглаживались. И хотя меломаны против твердотельной электроники, конструкция вправе существовать.

Для температурной компенсации и увеличения чувствительности возможно создавать сравнительные элементы из нескольких транзисторов и добиваться частичного усиления. В частности, это достигается применением дифференциальной пары (см. операционные усилители). Созданы прочие полезные схемы, читатели найдут примеры самостоятельно в поучительной книге под редакцией Г.С. Найвельта.

Осталось добавить, что электронный дроссель собирается и на полевом транзисторе (MOSFET). Тогда стабилизирующие свойства ухудшаются, а каскад добавляет в цепь тот шум, с которым борется. Карпов добавляет, что жёсткость электронного фильтра намного больше за счёт накопленной в конденсаторе энергии, допустимой к использованию в любой момент, и меньшего активного сопротивления. Электронный дроссель отлично фильтрует напряжение 50 Гц и применяется в маломощных источниках питания. Однако шум устройство подавляет хуже, нежели традиционный полосовой LC-фильтр. Следовательно, питаемая аппаратура не должна быть критична к уровню шумов.

Дроссели в электрике: что это и где используются?

Чтобы зажечь лампу, натриевую или люминесцентную, необходимо выровнять ток. При включении в сеть лампы, для выполнения этой функции используется дроссель. Он является в данном случае пускорегулирующей аппаратурой. Это устройство необходимо чтобы лампа загорелась. Без данного элемента лампа не может быть запущена. Лампа в обычном режиме может разогреваться на протяжении пяти минут, а иногда и больше. Пусковой ток, которые выдает дроссель может быть значительно больше рабочего напряжения.

Вообще есть два типа дросселей – с одной и двумя обмотками. Однообмоточный также называется ДНаТ. В статье будут рассмотрены все аспекты работы дросселей, как они действуют и какие функции выполняет. В заключении читатель найдет интересный материал на данную тему и видеоролик, который поможет детальнее разобраться в работе дросселей.

Дроссель ДНаТ разновидности и способы подключения

Для того, чтобы обеспечить зажигание и выравнивание тока натриевых ламп, как высокого, так и низкого давления, при включении осветительных приборов в сеть, применяется дроссель днат, к которым относятся пускорегулирующая аппаратура и балласты.Это основные устройства, без которых применение натриевых ламп является не то, чтобы нецелесообразным, а попросту бессмысленным. Помимо пускорегулирующего аппарата, необходимо приобрести также импульсное зажигающее устройство, сокращенно ИЗУ, которое позволяет разогреть лампу, при этом используется импульс, который позволяет получить разряд в газовой смеси.

В настоящее время двухобмоточные дроссели считаются морально устаревшими, поэтому применяются достаточно редко. Пускорегулирующий аппарат можно приобрети как отечественного производства, так и зарубежного, данное утверждение касается и импульсного зажигающего устройства. Главное условие, заключается в том, что мощность дросселя и ИЗУ должна соответствовать мощности натриевой лампы.

Отметим тот факт, что импульсное зажигающее устройство (ИЗУ) может быть двух видов. К первому виду относятся ИЗУ двухпроводные, ко второму виду относятся ИЗУ с тремя проводами. Соответственно, трех проводные устройства надежнее, но при этом цена на них дороже, поэтому вопрос упирается в экономическую целесообразность приобретения изделия. Следующим термином, который относится к такому понятию, как дроссель днат, является балласт. Балластом принято называть пускорегулирующий аппарат и импульсное запускающее устройство, которые имеют металлический корпус.

Существуют и открытые пра. Вопрос выбора открытого или закрытого устройства, зависит от предпочтений отдельно взятого электрика. К достоинства пра в металлическом корпусе отнесем более низкую рабочую температуру, гарантии производителя относительно сборки изделия, и более простую схему монтажа в осветительных приборах. Остановимся на схеме подключения днат. Итак, основное условие, это соответствие мощности дросселя, мощности лампы. Например, если у вас дроссель днат 600, то и натриевая лампа должна быть 600. Правило простое, но если его не соблюдать, то период эксплуатации осветительного прибора значительно снизится, и светоотдача упадет до критической отметки.

Причем, для соединений необходимо применять медный провод, моножильный или многожильный, сечением 0,75х1,5, хотя также вопрос на любителя, можно взять провод и большего сечения, так сказать, с запасом. Уделите внимание вопросу приобретения сетевого шнура, он также должен выдерживать большие нагрузки, сечение должно быть порядка 1,5 – 2,5 мм, даже если дроссель для днат 150. Примерные параметры дросселей приведены в таблице ниже.

Следующий момент, на который обращаем внимание, это необходимость установки предохранителя. Многие будут утверждать, что это лишняя трата денег, но это высказывание не соответствует истине. Предохранитель, как верный страж, спасет при пробое балласта, когда возможны различные неприятности, которые могут закончиться либо взрывом лампы, пожаром или банальным выбиванием пробок, если у вас не прикручены жучки. Автомат лучше всего приобретать двухполюсной, так более удобно, чтобы не заморачиваться, как необходимо вставить вилку в розетку.

Причем к выбору автоматов необходимо подойти со всей степенью серьезности. Как, впрочем, и к покупке других деталей, таких как дроссель днат 250, пускорегулирующая аппаратура или импульсное зажигающее устройство. Поэтому, необходимо покупать комплектующие исключительно в торговых точках, которые не занимаются продажей бракованного неликвида.

При этом лучше переплатить и купить нормальный автомат или дроссель, чем недоплатить и купить ПРА для ДНаТ произведенное китайской промышленностью. Чтобы потом не получилось, как в русской пословице: скупой платит дважды. Схемы подключения всех обозначенных в статье устройств, в каждом конкретном случае разные, поэтому необходимо воспользоваться услугами профессионального электрика, который выполнит работу качественно.

Потери в обмотках

Существуют два принципиально разных вида потерь в дросселях: потери в сердечнике и потери в обмотках. Первые обусловлены вихревыми токами внутри самого сердечника и магнитными свойствами материала — потерями на перемагничивание, отображаемыми в виде петли гистерезиса. Причина потерь в обмотках — это сопротивление самих проводов, обычно медных.

Дроссели, используемые в импульсных силовых приборах, подвержены воздействию ВЧ-пульсаций тока, что может привести к существенному росту эффективного сопротивления обмотки и связанных с ним потерь в медных проводниках. Сопротивление обмотки силовых дросселей включает в себя две составляющие: сопротивление постоянному и переменному току, возникающее в результате действия скин-эффекта и эффекта близости.

Изменение тока в проводе индуцирует магнитный поток, который, в свою очередь, приводит к снижению тока в центральной части провода до очень малых величин. Это ведет к уменьшению эффективного поперечного сечения проводника и увеличению его сопротивления с ростом частоты. Поэтому чем выше частота и ток, тем больше потери мощности. На рабочих частотах той цепи, в которую включен дроссель, сопротивление переменному току может становиться очень большим, часто намного превышающим сопротивление по постоянному току, что ведет к существенному росту потерь в медных проводниках.

Кроме того, в силовых дросселях, оснащенных сердечниками с зазором, магнитное поле в зоне воздушного промежутка создает сильный локальный эффект близости, способный значительно увеличить сопротивление медных проводников по переменному току, а, значит, привести к росту соответствующих потерь и даже выходу дросселя из строя. Все описанные явления влияют на величину потерь мощности в любом электромагнитном устройстве. Взаимосвязь этих явлений значительно усложняет процесс разработки дросселей. Например, один из распространенных способов уменьшения сопротивления по переменному току — применение литцендрата. Однако при этом значительно снижается поперечное сечение проводника, что ведет к резкому росту сопротивления постоянному току.

Рассмотрим другой пример. Для снижения потерь в обмотках при работе в режимах высоких постоянных токов часто применяются дроссели с обмотками из фольги, позволяющие эффективно использовать пространство внутри сердечника. Однако появление даже очень небольшого переменного тока может привести к возникновению в таких обмотках существенных потерь. Все это неприемлемо для большинства современных силовых систем. Многие преобразователи постоянного тока требуют использования дросселей, способных работать в режиме пульсирующих токов с большой постоянной составляющей.

Даже при условии того, что переменная составляющая тока будет всегда намного меньше постоянной составляющей, сопротивление переменному току может стать на порядок больше сопротивления постоянному току. Проблема становится все более острой по мере того, как в современных установках повышается плотность тока и рабочая частота. К счастью, уже найдены способы снижения потерь по переменному току в медных проводниках.

Однако порошковые сердечники, как правило, характеризуются гораздо большими потерями на перемагничивание, чем ферритовые. Поэтому в силовых установках с высоким уровнем пульсаций тока иногда все же предпочитают использовать сердечники с зазором — из-за меньших потерь в них. Или же применяют порошковые сердечники из материала со сравнительно высокой магнитной проницаемостью и зазором, что позволяет использовать преимущества и того, и другого подхода. Но в этих случаях приходится решать проблемы, связанные с краевыми эффектами в зазорах, а также с потерями в медных проводниках, которые могут быть весьма значительными.

Обмотки из литцендрата

Другая работа, проведенная West Coast Magnetics совместно с Thayer School of Engineering, позволила найти способы решения ряда проблем, связанных с применением обмоток из литцендрата в силовых дросселях с сердечниками с зазором. Дело в том, что поле в зоне зазора бывает довольно сильным, что может привести к возникновению локальных потерь в части обмотки, расположенной близко к нему. Было показано, что для заданной геометрии сердечника и каркаса существует оптимальное соотношение параметров обмотки из литцендрата и ее расположения внутри каркаса, позволяющее минимизировать потери в обмотке.

  • ширина и высота окна внутри сердечника;
  • ширина и высота окна каркаса дросселя;
  • амплитуда и частота пульсаций тока;
  • длина зазора;
  • коэффициент заполнения каркаса;
  • диаметр жил литцендрата;
  • длина витка;
  • количество витков.

Используя эти данные, программа рассчитывает напряженность поля внутри каркаса, а также идеальное расположение в нем обмотки. Кроме того, программа определяет суммарные потери в обмотке и выбирает количество жил, требуемое для заполнения доступного внутреннего пространства. Для примера рассмотрим дроссель индуктивностью 10,6 мкГн, работающий на частоте 250 кГц со среднеквадратичным значением пульсаций тока 4 А.

Как понизить напряжение сопротивлением?

Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер. Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:

R=(14.7-3.3)/0.02)= 570 Ом

Но резисторы отличаются по максимальной рассеиваемой мощности:

Ближайший по номиналу в большую сторону – резистор на 0.25 Вт. Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими. Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока. Недостаток – выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.

Как понизить переменное напряжение дросселем или конденсатором?

Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации. Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления. Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление).

Пример использования индуктивного сопротивление – это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников. А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется “бестрансфоматорный блок питания с балластным (гасящим) конденсатором”.

Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны – нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.

Заключение

Более подробно о том, что такое дроссель и зачем он нужен, можно узнать прочитав статью дроссели. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Читайте также:  Замена салонного фильтра Volkswagen Passat
Ссылка на основную публикацию
Adblock detector